Evolutionary Systems Applied to the Synthesis
of a CPU Controller

Ricardo S. Zebulum!2 Marco Aurélio Pacheco®® Marley Vellasco?3
! CCNR, University of Sussex, Brighton, BN1 9SB UK,
e-mail:ricardoz@cogs.susx.ac.uk
2 ICA - Pontificia Universidade Catolica do Rio de Janeiro - Brasil
3 Depto de Engenharia de Sistemas e Computacio, UERJ -RJ, Brasil

Abstract. Our work introduces an evolutionary approach applied to the
design of digital circuits. Particularly, we address the case of synthesising
a controller for a simple CPU, a case study which has not been tackled
by other authors so far. We employ a novel circuit evaluation strategy
that is able to cope with the problem of epistasis when using a gate
level representation of the circuit; and new evolvable hardware systems
paradigms derive from this new methodology. We show that the use of
this new evaluation approach allows the achievement of smaller circuits
and promises to be effective when the problem scales up. Furthermore,
our methodology yields novel digital circuits comparing to conventional
design.

Keywords: Evolutionary Hardware, Sequential Circuits, CPU control.

1 Introduction

This work applies artificial evolution as a tool for automatic synthesis of digital
circuits. Many applications of evolutionary systems in the design of both digi-
tal[2] and analog circuits[3] have been presented recently. In the particular case
of digital circuit evolution, most works have focused on the area of combinational
circuits; the main problem is that CAD tools for combinational circuit design
can easily outperform evolutionary systems when the later are applied without
any heuristics.

Due to the reasons mentioned above, the authors decided to investigate the
area of sequential circuits design through evolutionary systems, which seems to
be more promising in terms of competitiveness with conventional CAD tools.
Sequential circuits are those which use feedback by the use of devices called flip-
flops [4]. We propose a new kind of evaluation methodology, in which internal
points of the evolving digital circuits are assessed together with the circuit out-
put. This has been a way devised by the authors to reduce the epistatic effect
from the representation, which is further discussed in the paper. We selected a
CPU controller to be evolved, since this illustrates a practical application for
evolutionary systems.



This article is composed of five additional sections: section 2 briefly reviews
the area of sequential systems design and conventional tools used for that pur-
pose. Section 3 presents the target problem, i.e., the particular architecture of
the CPU for which the control circuit will be designed. Section 4 shows our evo-
lutionary approach and section 5 describes the evolved circuit. Finally, section
6 analyses our results.

2 Sequential System Design

Figure 1 illustrates the basic topology of a sequential circuit. It can be seen that
a combinational circuit (formed by basic boolean gates) and storage elements are
interconnected to form this kind of topology [4]. The sequential circuit receives
binary information from its environment via the inputs. These inputs, together
with the present state of the storage elements, determine the binary value of the
outputs. A sequential circuit is specified by a time sequence of inputs, internal
states and outputs [4].

SIS system is a state of art tool for synthesis and optimisation of sequential
circuits [6]. One of the main features of this tool is the exploration of signal de-
pendencies across the memory elements boundaries, instead of optimising logic
only within the combinational blocks. SIS includes methods for state assignment,
state minimisation, testing, retiming, technology mapping, verification, timing
analysis and optimisation across register boundaries. However, the design speci-
fication must be supplied as a netlist of gates or a finite state machine transition
table, which requires a prior knowledge of the system from the user. We will show
that our evolutionary system does not need this kind of previous knowledge.

Inputs ) Outputs
Combinationd Next Present
Circuit Sde | Storage Stete
—

Elements

Fig. 1. Block Diagram of a Sequential Circuit (extracted from [4])

3 Target Problem - Random Control Logic Unit

The task of controlling the operations of a microprocessor is a typical example
of a sequential circuit task. The control unit of a CPU consists of a program
counter(PC), an instruction register(IR), and control logic; and may either be
hardwired or microprogrammed. The control unit enables the CPU to carry out
the instruction currently in the instruction register. In other words, there is a



pattern of bits in the instruction register that is used to generate a sequence of
actions taking place during the execution of an instruction [1]; the control unit
is the circuit that provide this operation. Particularly, the random or hardwired
logic control unit is made up of an arrangement of boolean gates.

In [1], a simple model of CPU is presented and a random logic control unit
is designed for allowing the execution of eight different instructions. Using this
CPU model we propose the task of evolving the control unit, instead of design-
ing it. Figure 2 shows the structure of this primitive CPU; table 1 shows the
interpretation of machine-code instructions (note that the fetch cycle occurs for
all the eight instructions). Due to space reasons this table shows only some of
the control signals, which are 16 in the total, being divided in clock signals(C),
enable signals (E), flip-flop signals (Reset, Set), read and write. The evolution-
ary system must generate the signals Cyrar, EvBR, EIR, €tc, given a particular
instruction as input. For further details on the CPU operation, refer to [1].

System

R J7 & Gvsr
Read i Bus
Date
Main Store
Address Input Write
e —

—>
Cumar MAR
Cuer 7 MBR I
EMBR
— >
Cr [ IR | %ﬁ
v EiR
Ge —=] PC I %BK:
Epc
—]
oo [ oo = %‘m
E_ Epo
o ALU Q
4 . f(Ps ~Catu

EaLu

Fig. 2. Block Diagram of a Simple CPU (Reproduced from [1])

Ingtruction Time Enables Clocks Fip-Fop
MBR IR PC DO ALU  MAR MBR IR PC SET RESET

Fetch

==
o

Load

| Swore
Add

Sub

rorokor gor gorgo o | cocoo
cooolocodoogoodo |o | roocoo
cooojocodoogoodo o | coror
cooojocogdo oo odr |o | cocoo
cooolocogdoogoodo o | oo
oror{or oo oo oo |o | cocco
coocloocogdoogoodo |o | coo

cooojlocogdooaoodo o | orooo

FRAgadagRAaRAda 38

Bra T0 0
Beq 0 0 100 0

o
o
o
o
o

o
o
o
~

{Table 1 - Interpretation of Machine Code Instructions (Reproduced from [1])



4 Problem Modelling

This section describes both the representation and evaluation used within our
evolutionary system.

The gate level representation [2] has been used to encode each circuit into an
integer string. Figure 3 illustrates an example of this kind of representation for
a particular output signal. As there are a total of 16 output signals, the overall
system will be made up of 16 cells like the one in the figure.

The genotype is made up of blocks of integer numbers or genes that encode
each particular logic gate shown in the figure. The genes associated with gates
of the first layer will encode its nature and also the source of the input signal.
The cell input signals are chosen among the following signals (Figure 4):

1. Clock signals, supplied by a master-clock and a counter;

2. the three bits of the instruction register that determines the instruction to
be executed;

3. and the own output control signals delayed by one clock period.

The delay flip-flop is a way devised by the authors to provide extra signals
to be supplied to the cell’s inputs: in this case, the own output signals delayed
by one clock pulse. It has been verified that this procedure facilitates the task
of the evolutionary system. The disadvantage of this approach is the increase
in hardware requirements in terms of number of flip-flops. As it will be seen in
the results’ section, the authors sought for a compromise, by inserting the delay
flip-flop in only some cells.

Delayed output signal

=1 [
& \ Gene selects gate’ s nature

Gene selects gate' s nature (AND, NAND, OR, NOR and XOR)
and inputs’ sources

Fig. 3. Gate level represention of a sequential circuit

The fitness evaluation function was designed to simply count the number
of hits in each cell output, comparing to the target output signals. The main
problem of this evaluation function is the epistasis it introduces in the system.
This fact can be visualised in Figure 5. Supposing that the boolean function



Input Signals

Master
Clok——E>|  COUNTER
VAR

Clk  Clki2 Clk/4

©)

Instruction Register: 121110

®

Delayed Output Sugnals: MBR-ENABLE(T - 1), IR-ENABLE(T-1), PC-ENABLE(T-1),
DO-ENABLE(T-1), ALU-ENABLE(T-1), MAR-CLOCK (T-1), MBR-CLOCK (T-1),
IR-CLOCK (T-1), PC- CLOCK(T-1), DO-CLOCK(T-1), F(T-1), WRITE(T-1), RESET(T-1),
READ(T-1), SET(T-1) and FO(T-1).

Fig. 4. Inputs available for the evolutionary system

a.b + a.c is to be evolved, it can be seen that circuit of Figure 5.a is evaluated
only by its output value, F;, which is always zero in the case. Therefore, the
circuit scores just four hits out of eight (see truth table in the Figure), though
a simple mutation, changing the output gate from an AND to an OR, would
solve the problem. This illustrates the fact that close genotypes may be not
close in fitness. In Figure 5.b, instead, we fix the output gate to an OR gate,
and the fitness is given by F; + F» + F3. This methodology brings the following
advantages:

1. As internal points of the circuit are being probed, useful sub-circuits can be
identified;

2. As the fitness is now a sum of terms, small changes in the genotype will have
less impact in the overall fitness, diminishing then epistatic effects.

The output gates can either be fixed to the OR or NOR functions, corre-
sponding respectively to the OR and NOR evolvable hardware paradigms. In
the former, the target function for the internal points will be the same of the
output point; in the later, it will be the complemented value of the target func-
tion. This is due to the fact that OR and NOR gates perform boolean sum and
complemented boolean sum respectively. Fixing the output gate to other kind
of logic function will increase the complexity of the evaluation function.

Additionally, when the output gate is fixed as an OR function, there will be
heavy penalties when internal circuit points produces logic ’1’ value when the
target is a logic ’0’ value, since this '1’ value will also clamp the output to an
erroneous value, regardless of the values of other internal points.

In the circuit of Figure 3, the output has been fixed to a NOR boolean
function (2 ORs followed by 1 NOR = 1 NOR); five points are then evaluated,
the final output and four internal points.

As a more quantitative measure of performance improvement using this
methodology, a correct circuit to generate the WRITE signal has been achieved
in 9 out of 10 trials using the NOR paradigm, whilst no successful execution
have been obtained without using this paradigm.



Fixed Output
Gate

Fitness=F + F, + F3

(B)

Fig. 5. New evaluation methodology

5 Results

In order to evolve the whole control system, 16 genetic algorithms have to be
executed, one for each circuit output. It has been verified that unsuccessful
results are obtained when using one genetic algorithm to evolve more than one
output. The authors adopted the following strategy:

1. Run the 16 GAs for each signal, assuming a delay flip-flop in each circuit
output;

2. Find the output signal(s) which was(were) hardest to evolve, and store the
delayed output signals used as inputs to this(these) cell(s);

3. Re-run the GA for the other signals, keeping available only the delayed
signals used by the circuit representing the signals mentioned in the second
item;

As stated previously, the idea of placing a flip-flop delay in the output of
each cell is a means to give more resources to the genetic algorithm to find a
solution. Nevertheless, in order to minimise the increase in hardware yielded by
this approach, the method described above is used, i.e., placing flip-flop delay
only in those signals used by the cells which have been hardest to evolve.

In our particular case, the RESET signal has been the hardest to be evolved.
Its circuit is shown in Figure 6. From this Figure, it can be seen that the
OR paradigm has been used for the evolutionary process. In the final evolved
circuit, it has been verified that the cell could be simplified by taking away a
sub-circuit which was not effectively contributing to the final behaviour. The
possibility of cutting hardware from the final solution is another advantage of
the OR paradigm.

In order to evolve the other signals, we allowed the GA to use only the delayed
output signals used in the RESET circuit, which are shown in the Figure. After
simplifying the circuit, it can be verified that only 5 out of 16 delayed output
signals will be used, meaning that 5 additional flip-flops are going to be required.

Due to space reasons, we will not show the overall circuit. For some signals
the OR-paradigm proved to be more efficient, while for others the NOR paradigm



17
2-MBR-ENABLE(T-1)
3-RESET(T-)

Rese(T) 4-MBRENABLE[T-])

A Reset(T-1) 5-PCCLOCK(T-1)
6-Clk
0) 7- MBRCLOCK[TY)
v . 8-Clki4
D D O Delayed output signd 9-DOCLOKT
Ok 10-MBR-CLOCK(T-1)
11-GROUND
12-READ(TY)
Master 13- DFENABLE(TT)
14-SET(T-1)
Clock 5T

612

Fig. 6. Circuit evolved to generate the RESET control signal

yielded better results. The graph of Figure 7 compares the evolution of the par-
ticular signal ALU-ENABLE when the OR and NOR paradigms are used. The
average value of the best genotypes over five executions, along 300 generations
for 40 individuals is shown in this graph. When using the OR paradigm, 4 out
of 5 executions were successful, while 5 out of 5 were successful when using the
NOR paradigm. It took around 4 minutes to run the executions in a SPARC 4
workstation.

ooooo

Fitness

6.0 2600 360.0
Generations

Fig. 7. Average Fitness of the Best Genotypes for the ALU-ENABLE signal using OR
and NOR Paradigms

One of the evolved circuits for the ALU-ENABLE signal is shown in Figure
8. It can be verified that this circuit could be utterly simplified, and there is no
need for an output flip-flop.

6 Analysis of the Results

We can compare the evolved CPU controller with a human designed one shown in
[1]. The evolved circuit uses five additional flip-flops, meaning that evolutionary



Clk/2

ALU-ENABLE

ok
‘PC-Clock (T-1) j
Fig. 8. Circuit evolved to generate the ALU-ENABLE control signal

systems does not use the minimum amount of states in the synthesis of the
sequential system. In terms of boolean gates, the evolved controller uses around
150 gates, against 90 of the human designed one. Nevertheless, it seems possible
to evolve controllers with around 100 boolean gates.

The increase in hardware requirements to synthesise the controller is some-
what expected, as evolutionary systems usually does not come to parsimonious
solutions for design problems [3]. However, the proposed system has the advan-
tage of using minimum designer knowledge and arriving at novel digital circuits.
The former property reveals an advantage over conventional CAD tools like SIS;
the latter property can be promising for more complex designs.

The authors have also presented a new evolvable hardware system method-
ology, in which internal circuit points are evaluated; this methodology can over-
come epistasis problems and it proved to be essential in the synthesis of some
control signals.

7 Acknowledges

The authors wish to thank CAPES, Brazilian federal agency, for the support.

References

1. Clements, A., "The Principles of Computer Hardware”, Oxford University Press,
1991

2. Higuchi, T., Iba, H., Manderick, B., ”Evolvable Hardware”, in Massively Parallel
Artificial Intelligence (ed. H. Kitano), MIT Press, 1994.

3. Koza J. R., Bennett IIT F. H., Andre, D. ; Keane, M. A., ”Four Problems for which a
Computer Problem Evolved By Genetic Programming is Competitive with Human
Performance”, Proc. Of ICEC-96, IEEE Press., Pages 1-10.

4. Morris, M., Kime, C. R., "Logic and Computer Design Fundamentals”, Prentice-
Hall International Inc., 1997.

5. Muller, J. F., Thomson, P. ; ”Combinational and Sequential Logic Optimization
Using Genetic Algorithms”, Proc. of the First IEE/IEEE Int. Conf. on Genetic
Algorithms in Engineering Systems , pp.34-38, UK, 1995.

6. Sentovich, E. M., Singh, K. J., Moon, C., Savoj, H., Brayton, R.K., Sangiovanni-
Vincentelli, A., ”Sequential Circuit Design Using Synthesis and Optimization”, Pro-
ceedings of the IEEE Int. Conf. on Computer Design, pp. 328-333, 1992.

7. Zebulum, R. S., Pacheco, M. A., Vellasco, M., ” Comparison of Different Evolution-
ary Methodologies Applied to Electronic Filter Design”, Proc. of IEEE International
Conference on Evolutionary Computation, Alaska, May, 1998.



